Analysis All Participants

Null (unconditional) model

d.Null <- lme(DV~1,random=~1|Case,data=data,
control=list(opt="optim"),na.action="na.omit")
coefficients(d.Null)
##   (Intercept)
## 1    77.59026
## 2    87.60157
## 3    60.75968
intervals(d.Null)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                lower     est.    upper
## (Intercept) 58.50907 75.31717 92.12527
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                    lower     est.    upper
## sd((Intercept)) 5.046643 13.71001 37.24542
## 
##  Within-group standard error:
##    lower     est.    upper 
## 3.816190 5.290175 7.333481
summary(d.Null)
## Linear mixed-effects model fit by REML
##   Data: data 
##        AIC      BIC    logLik
##   140.1591 143.1463 -67.07954
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    13.71001 5.290175
## 
## Fixed effects:  DV ~ 1 
##                Value Std.Error DF  t-value p-value
## (Intercept) 75.31717  8.000347 18 9.414238       0
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.68419420 -0.60105429 -0.06053865  0.36288778  2.12475331 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in level (with an autocorrelation component)

d.Level <- lme(DV~1+Phase,random=~1|Case,data=data,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
coefficients(d.Level)
##   (Intercept)    Phase
## 1    75.40222 4.712859
## 2    86.22450 4.712859
## 3    60.11892 4.712859
intervals(d.Level)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                  lower      est.     upper
## (Intercept) 56.9759896 73.915213 90.854437
## Phase       -0.5146241  4.712859  9.940342
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                    lower     est.    upper
## sd((Intercept)) 4.811975 13.44052 37.54125
## 
##  Correlation structure:
##          lower      est.     upper
## Phi -0.4506453 0.5158382 0.9256066
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##     lower      est.     upper 
##  2.396852  5.111685 10.901517
summary(d.Level)
## Linear mixed-effects model fit by REML
##   Data: data 
##        AIC      BIC    logLik
##   130.0597 134.7819 -60.02985
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    13.44052 5.111685
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.5158382 
## Fixed effects:  DV ~ 1 + Phase 
##                Value Std.Error DF  t-value p-value
## (Intercept) 73.91521  8.028770 17 9.206294  0.0000
## Phase        4.71286  2.477697 17 1.902113  0.0742
##  Correlation: 
##       (Intr)
## Phase -0.138
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.6176497 -0.7255759 -0.2175843  0.3653938  1.4023217 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in slope (with an autocorrelation component)

d.Time <- lme(DV~1+Time_CTR,random=~1|Case,data=data,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Time)
##   (Intercept) Time_CTR
## 1    78.51794 1.318265
## 2    89.70002 1.318265
## 3    64.97939 1.318265
intervals(d.Time)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                  lower      est.     upper
## (Intercept) 61.1423304 77.732447 94.322564
## Time_CTR    -0.2819025  1.318265  2.918433
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                    lower     est.   upper
## sd((Intercept)) 4.414208 12.95666 38.0306
## 
##  Correlation structure:
##          lower      est.     upper
## Phi -0.3561357 0.6619135 0.9614602
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##     lower      est.     upper 
##  2.229472  5.923911 15.740372
summary(d.Time)
## Linear mixed-effects model fit by REML
##   Data: data 
##        AIC      BIC    logLik
##   132.0507 136.7728 -61.02533
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    12.95666 5.923911
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.6619135 
## Fixed effects:  DV ~ 1 + Time_CTR 
##                Value Std.Error DF  t-value p-value
## (Intercept) 77.73245  7.863302 17 9.885471  0.0000
## Time_CTR     1.31827  0.758440 17 1.738128  0.1003
##  Correlation: 
##          (Intr)
## Time_CTR 0.097 
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.7712715 -0.5522964 -0.1364063  0.2555402  0.9086972 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in level/slope in Tx (with autocorrelation)

d.Model <- lme(DV~1+Phase+Time_PhaseCTR,random=~1|Case,data=data,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Model)
##   (Intercept)    Phase Time_PhaseCTR
## 1    74.39644 6.007971        3.5235
## 2    85.33731 6.007971        3.5235
## 3    58.86693 6.007971        3.5235
intervals(d.Model)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                    lower      est.     upper
## (Intercept)   55.9934443 72.866894 89.740344
## Phase          1.4569318  6.007971 10.559010
## Time_PhaseCTR  0.2448482  3.523500  6.802152
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                    lower     est.    upper
## sd((Intercept)) 4.930429 13.48576 36.88641
## 
##  Correlation structure:
##          lower      est.     upper
## Phi -0.3135413 0.4175362 0.8378386
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##    lower     est.    upper 
## 2.437527 4.253879 7.423706
summary(d.Model)
## Linear mixed-effects model fit by REML
##   Data: data 
##        AIC     BIC    logLik
##   124.6657 130.008 -56.33286
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    13.48576 4.253879
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.4175362 
## Fixed effects:  DV ~ 1 + Phase + Time_PhaseCTR 
##                  Value Std.Error DF  t-value p-value
## (Intercept)   72.86689  7.959530 16 9.154673  0.0000
## Phase          6.00797  2.146813 16 2.798554  0.0129
## Time_PhaseCTR  3.52350  1.546603 16 2.278219  0.0368
##  Correlation: 
##               (Intr) Phase 
## Phase         -0.123       
## Time_PhaseCTR -0.039  0.182
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.64953689 -0.56590973 -0.02502208  0.52730007  1.39051909 
## 
## Number of Observations: 21
## Number of Groups: 3

Results

Value Score p-Value
Autocorrelation .418
Level 6.01 .013
Slope 3.52 .037

Interpretation: The effect size isnโ€™t particularly large, but the p-value is significant, which is helpful.The p-value for the change in slope is also significant.

SAJE

Null (unconditional) model

d.Null_saje <- lme(DV~1,random=~1|Case,data=saje,
control=list(opt="optim"),na.action="na.omit")
coefficients(d.Null_saje)
##   (Intercept)
## 1    77.16667
#intervals(d.Null_saje)
summary(d.Null_saje)
## Linear mixed-effects model fit by REML
##   Data: saje 
##        AIC      BIC    logLik
##   59.26448 58.09279 -26.63224
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:     45.2989 41.60969
## 
## Fixed effects:  DV ~ 1 
##                Value Std.Error DF  t-value p-value
## (Intercept) 77.16667  48.37924  5 1.595037  0.1716
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.01338564 -0.86918847 -0.07610406  0.89722681  1.07747327 
## 
## Number of Observations: 6
## Number of Groups: 1

Model with random intercept and change in level (with an autocorrelation component)

d.Level_saje <- lme(DV~1+Phase,random=~1|Case,data=saje,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
coefficients(d.Level_saje)
##   (Intercept)    Phase
## 1    48.84638 64.99212
#intervals(d.Level_saje)
summary(d.Level_saje)
## Linear mixed-effects model fit by REML
##   Data: saje 
##        AIC      BIC    logLik
##   38.81218 35.74365 -14.40609
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    20.01381 18.38386
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.8831458 
## Fixed effects:  DV ~ 1 + Phase 
##                Value Std.Error DF  t-value p-value
## (Intercept) 48.84638 26.037559  4 1.875997  0.1339
## Phase       64.99212  8.823632  4 7.365688  0.0018
##  Correlation: 
##       (Intr)
## Phase -0.169
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -0.7531812 -0.5216787 -0.3724124  0.1038700  0.4439493 
## 
## Number of Observations: 6
## Number of Groups: 1

Model with random intercept and change in slope (with an autocorrelation component)

d.Time_saje <- lme(DV~1+Time_CTR,random=~1|Case,data=saje,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Time_saje)
##   (Intercept) Time_CTR
## 1    87.41363 17.53902
#intervals(d.Time_saje)
summary(d.Time_saje)
## Linear mixed-effects model fit by REML
##   Data: saje 
##        AIC      BIC    logLik
##   49.61166 46.54313 -19.80583
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    28.65683 26.32298
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.5043509 
## Fixed effects:  DV ~ 1 + Time_CTR 
##                Value Std.Error DF  t-value p-value
## (Intercept) 87.41363  33.10484  4 2.640509  0.0575
## Time_CTR    17.53902   7.20741  4 2.433472  0.0717
##  Correlation: 
##          (Intr)
## Time_CTR 0.109 
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.1349249 -0.4985988  0.1654783  0.4591566  0.6301099 
## 
## Number of Observations: 6
## Number of Groups: 1

Model with random intercept and change in level/slope in Tx (with autocorrelation)

d.Model_saje <- lme(DV~1+Phase+Time_PhaseCTR,random=~1|Case,data=saje,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Model_saje)
##   (Intercept)    Phase Time_PhaseCTR
## 1    38.54159 76.80274       9.14747
#intervals(d.Model_saje)
summary(d.Model_saje)
## Linear mixed-effects model fit by REML
##   Data: saje 
##        AIC      BIC    logLik
##   31.34977 25.94145 -9.674887
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    4.223661  3.87968
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##        Phi 
## -0.8263351 
## Fixed effects:  DV ~ 1 + Phase + Time_PhaseCTR 
##                  Value Std.Error DF  t-value p-value
## (Intercept)   38.54159  4.299702  3  8.96378  0.0029
## Phase         76.80274  1.181434  3 65.00810  0.0000
## Time_PhaseCTR  9.14747  1.368994  3  6.68189  0.0068
##  Correlation: 
##               (Intr) Phase 
## Phase         -0.138       
## Time_PhaseCTR  0.032 -0.024
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -0.91285489 -0.62326334 -0.09516797  0.60735881  1.40692384 
## 
## Number of Observations: 6
## Number of Groups: 1

Results

Value Score p-Value
Autocorrelation -0.826
Level 76.802 .000
Slope 9.147 .0068

LELI

Null (unconditional) model

d.Null_leli <- lme(DV~1,random=~1|Case,data=leli,
control=list(opt="optim"),na.action="na.omit")
coefficients(d.Null_leli)
##   (Intercept)
## 1      64.375
#intervals(d.Null_leli)
summary(d.Null_leli)
## Linear mixed-effects model fit by REML
##   Data: leli 
##        AIC      BIC    logLik
##   78.02054 77.85827 -36.01027
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    33.71566 35.76086
## 
## Fixed effects:  DV ~ 1 
##              Value Std.Error DF t-value p-value
## (Intercept) 64.375  36.00835  7 1.78778   0.117
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.0451370 -0.7515199 -0.3740122  0.7655017  1.6952891 
## 
## Number of Observations: 8
## Number of Groups: 1

Model with random intercept and change in level (with an autocorrelation component)

d.Level_leli <- lme(DV~1+Phase,random=~1|Case,data=leli,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
coefficients(d.Level_leli)
##   (Intercept)    Phase
## 1    40.22831 64.41959
#intervals(d.Level_leli)
summary(d.Level_leli)
## Linear mixed-effects model fit by REML
##   Data: leli 
##        AIC     BIC   logLik
##   61.31881 60.2776 -25.6594
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    13.08313 13.87676
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##         Phi 
## -0.00723058 
## Fixed effects:  DV ~ 1 + Phase 
##                Value Std.Error DF  t-value p-value
## (Intercept) 40.22831  14.46504  6 2.781071  0.0320
## Phase       64.41959  10.09062  6 6.384104  0.0007
##  Correlation: 
##       (Intr)
## Phase -0.261
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.1276337 -0.6289877 -0.2117285  0.6681452  1.4666320 
## 
## Number of Observations: 8
## Number of Groups: 1

Model with random intercept and change in slope (with an autocorrelation component)

d.Time_leli <- lme(DV~1+Time_CTR,random=~1|Case,data=leli,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Time_leli)
##   (Intercept) Time_CTR
## 1      80.557 10.67289
#intervals(d.Time_leli)
summary(d.Time_leli)
## Linear mixed-effects model fit by REML
##   Data: leli 
##        AIC      BIC    logLik
##   71.35846 70.31725 -30.67923
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    25.86805 27.43721
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.2613086 
## Fixed effects:  DV ~ 1 + Time_CTR 
##                Value Std.Error DF  t-value p-value
## (Intercept) 80.55700 29.501113  6 2.730643  0.0342
## Time_CTR    10.67289  4.878049  6 2.187943  0.0713
##  Correlation: 
##          (Intr)
## Time_CTR 0.248 
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.17399724 -0.46013290 -0.07531162  0.30576171  1.61980748 
## 
## Number of Observations: 8
## Number of Groups: 1

Model with random intercept and change in level/slope in Tx (with autocorrelation)

d.Model_leli <- lme(DV~1+Phase+Time_PhaseCTR,random=~1|Case,data=leli,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Model_leli)
##   (Intercept)    Phase Time_PhaseCTR
## 1    40.48678 63.56558     -13.63009
#intervals(d.Model_leli)
summary(d.Model_leli)
## Linear mixed-effects model fit by REML
##   Data: leli 
##        AIC      BIC    logLik
##   55.03482 52.69145 -21.51741
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    11.47764 12.17387
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##        Phi 
## -0.2432149 
## Fixed effects:  DV ~ 1 + Phase + Time_PhaseCTR 
##                   Value Std.Error DF   t-value p-value
## (Intercept)    40.48678 12.298989  5  3.291878  0.0217
## Phase          63.56558  7.479762  5  8.498343  0.0004
## Time_PhaseCTR -13.63009  8.246719  5 -1.652790  0.1593
##  Correlation: 
##               (Intr) Phase 
## Phase         -0.225       
## Time_PhaseCTR  0.022 -0.023
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.2364477 -0.7382020  0.2394792  0.6595564  1.1100188 
## 
## Number of Observations: 8
## Number of Groups: 1

Results

Value Score p-Value
Autocorrelation -0.243
Level 63.566 .0004
Slope -13.630 .1593

GIAD

Null (unconditional) model

d.Null_giad <- lme(DV~1,random=~1|Case,data=giad,
control=list(opt="optim"),na.action="na.omit")
coefficients(d.Null_giad)
##   (Intercept)
## 1    163.4286
#intervals(d.Null_giad)
summary(d.Null_giad)
## Linear mixed-effects model fit by REML
##   Data: giad 
##        AIC      BIC    logLik
##   76.32274 75.69802 -35.16137
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    72.74827 72.17769
## 
## Fixed effects:  DV ~ 1 
##                Value Std.Error DF  t-value p-value
## (Intercept) 163.4286  77.69519  6 2.103458  0.0801
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.28056981 -0.76101869 -0.08906591  0.74221588  1.40724132 
## 
## Number of Observations: 7
## Number of Groups: 1

Model with random intercept and change in level (with an autocorrelation component)

d.Level_giad <- lme(DV~1+Phase,random=~1|Case,data=giad,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
coefficients(d.Level_giad)
##   (Intercept)    Phase
## 1    136.5865 114.3772
#intervals(d.Level_giad)
summary(d.Level_giad)
## Linear mixed-effects model fit by REML
##   Data: giad 
##        AIC      BIC    logLik
##   59.62525 57.67244 -24.81262
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    58.18389 57.72754
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.8183866 
## Fixed effects:  DV ~ 1 + Phase 
##                Value Std.Error DF  t-value p-value
## (Intercept) 136.5865  75.65526  5 1.805381  0.1308
## Phase       114.3772  34.03763  5 3.360316  0.0201
##  Correlation: 
##       (Intr)
## Phase -0.211
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.13613970 -0.74098335 -0.43244078  0.00389515  0.35361730 
## 
## Number of Observations: 7
## Number of Groups: 1

Model with random intercept and change in slope (with an autocorrelation component)

d.Time_giad <- lme(DV~1+Time_CTR,random=~1|Case,data=giad,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Time_giad)
##   (Intercept) Time_CTR
## 1    226.3155 18.00746
#intervals(d.Time_giad)
summary(d.Time_giad)
## Linear mixed-effects model fit by REML
##   Data: giad 
##        AIC      BIC    logLik
##   66.72318 64.77037 -28.36159
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:    321.5464 319.0244
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.9831512 
## Fixed effects:  DV ~ 1 + Time_CTR 
##                 Value Std.Error DF   t-value p-value
## (Intercept) 226.31553  448.0850  5 0.5050727  0.6350
## Time_CTR     18.00746   23.4107  5 0.7691983  0.4765
##  Correlation: 
##          (Intr)
## Time_CTR 0.052 
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -0.373954519 -0.256408649 -0.057434433 -0.024521589  0.008508131 
## 
## Number of Observations: 7
## Number of Groups: 1

Model with random intercept and change in level/slope in Tx (with autocorrelation)

d.Model_giad <- lme(DV~1+Phase+Time_PhaseCTR,random=~1|Case,data=giad,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Model_giad)
##   (Intercept)    Phase Time_PhaseCTR
## 1    125.2049 141.9503       28.2272
#intervals(d.Model_giad)
summary(d.Model_giad)
## Linear mixed-effects model fit by REML
##   Data: giad 
##        AIC      BIC    logLik
##   52.24512 48.56288 -20.12256
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:     257.158 255.1411
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.9911537 
## Fixed effects:  DV ~ 1 + Phase + Time_PhaseCTR 
##                  Value Std.Error DF  t-value p-value
## (Intercept)   125.2049  361.0692  4 0.346761  0.7462
## Phase         141.9503   41.4083  4 3.428063  0.0266
## Time_PhaseCTR  28.2272   23.9428  4 1.178945  0.3038
##  Correlation: 
##               (Intr) Phase 
## Phase         -0.076       
## Time_PhaseCTR -0.065  0.573
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -0.21245055 -0.14180403 -0.12121920 -0.06386127  0.12461789 
## 
## Number of Observations: 7
## Number of Groups: 1

Results

Value Score p-Value
Autocorrelation 0.991
Level 141.950 .0266
Slope 28.2272 .3038

Analysis Digit Span

Null (unconditional) model

d.Null_ds <- lme(DV~1,random=~1|Case,data=data_ds,
control=list(opt="optim"),na.action="na.omit")
coefficients(d.Null_ds)
##   (Intercept)
## 1    4.276191
## 2    4.241883
## 3    3.331209
intervals(d.Null_ds)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                lower     est.    upper
## (Intercept) 3.200901 3.949761 4.698622
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                     lower      est.    upper
## sd((Intercept)) 0.1876599 0.5752461 1.763339
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.4253815 0.5895381 0.8170434
summary(d.Null_ds)
## Linear mixed-effects model fit by REML
##   Data: data_ds 
##        AIC      BIC    logLik
##   48.72156 51.70876 -21.36078
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept)  Residual
## StdDev:   0.5752461 0.5895381
## 
## Fixed effects:  DV ~ 1 
##                Value Std.Error DF  t-value p-value
## (Intercept) 3.949761 0.3564437 18 11.08102       0
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.1065359 -0.5618106 -0.4684877  1.1344326  1.2859505 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in level (with an autocorrelation component)

d.Level_ds <- lme(DV~1+Phase,random=~1|Case,data=data_ds,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
coefficients(d.Level_ds)
##   (Intercept)     Phase
## 1    3.880750 0.8579849
## 2    3.896431 0.8579849
## 3    2.969476 0.8579849
intervals(d.Level_ds)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                lower      est.    upper
## (Intercept) 2.869102 3.5822188 4.295336
## Phase       0.491807 0.8579849 1.224163
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                     lower      est.    upper
## sd((Intercept)) 0.1927352 0.5503671 1.571607
## 
##  Correlation structure:
##          lower       est.     upper
## Phi -0.4697066 0.03833955 0.5273091
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.2688373 0.3837592 0.5478075
summary(d.Level_ds)
## Linear mixed-effects model fit by REML
##   Data: data_ds 
##        AIC      BIC    logLik
##   37.39326 42.11545 -13.69663
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept)  Residual
## StdDev:   0.5503671 0.3837592
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##        Phi 
## 0.03833955 
## Fixed effects:  DV ~ 1 + Phase 
##                Value Std.Error DF   t-value p-value
## (Intercept) 3.582219 0.3379996 17 10.598294   0e+00
## Phase       0.857985 0.1735592 17  4.943471   1e-04
##  Correlation: 
##       (Intr)
## Phase -0.223
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.33592002  0.07953901  0.26988088  0.44960207  0.68080589 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in slope (with an autocorrelation component)

d.Time_ds <- lme(DV~1+Time_CTR,random=~1|Case,data=data_ds,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Time_ds)
##   (Intercept)  Time_CTR
## 1    4.390155 0.1869227
## 2    4.435741 0.1869227
## 3    3.695434 0.1869227
intervals(d.Time_ds)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                  lower      est.     upper
## (Intercept) 3.50718262 4.1737767 4.8403709
## Time_CTR    0.06128407 0.1869227 0.3125614
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                     lower      est.    upper
## sd((Intercept)) 0.1312738 0.4726437 1.701727
## 
##  Correlation structure:
##          lower      est.     upper
## Phi -0.2222999 0.4384268 0.8231912
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.2731961 0.4653590 0.7926872
summary(d.Time_ds)
## Linear mixed-effects model fit by REML
##   Data: data_ds 
##        AIC      BIC    logLik
##   40.40173 45.12393 -15.20087
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:   0.4726437 0.465359
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.4384268 
## Fixed effects:  DV ~ 1 + Time_CTR 
##                Value  Std.Error DF   t-value p-value
## (Intercept) 4.173777 0.31594900 17 13.210286   0.000
## Time_CTR    0.186923 0.05954959 17  3.138942   0.006
##  Correlation: 
##          (Intr)
## Time_CTR 0.19  
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.2818838 -0.5346795  0.1122929  0.5071339  1.2125248 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in level/slope in Tx (with autocorrelation)

d.Model_ds <- lme(DV~1+Phase+Time_PhaseCTR,random=~1|Case,data=data_ds,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Model_ds)
##   (Intercept)     Phase Time_PhaseCTR
## 1    3.883105 0.8602356     0.3351175
## 2    3.898722 0.8602356     0.3351175
## 3    2.958187 0.8602356     0.3351175
intervals(d.Model_ds)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                    lower      est.     upper
## (Intercept)   2.86859841 3.5800044 4.2914105
## Phase         0.53576638 0.8602356 1.1847048
## Time_PhaseCTR 0.04271431 0.3351175 0.6275207
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                     lower      est.    upper
## sd((Intercept)) 0.1971253 0.5539434 1.556641
## 
##  Correlation structure:
##          lower       est.     upper
## Phi -0.4516962 0.03930146 0.5120266
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.2344441 0.3382198 0.4879314
summary(d.Model_ds)
## Linear mixed-effects model fit by REML
##   Data: data_ds 
##        AIC      BIC    logLik
##   36.20836 41.55059 -12.10418
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept)  Residual
## StdDev:   0.5539434 0.3382198
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##        Phi 
## 0.03930146 
## Fixed effects:  DV ~ 1 + Phase + Time_PhaseCTR 
##                  Value Std.Error DF   t-value p-value
## (Intercept)   3.580004 0.3355839 16 10.667987  0.0000
## Phase         0.860236 0.1530584 16  5.620311  0.0000
## Time_PhaseCTR 0.335117 0.1379322 16  2.429581  0.0273
##  Correlation: 
##               (Intr) Phase 
## Phase         -0.198       
## Time_PhaseCTR -0.004  0.010
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.6572115 -0.2319723  0.1236261  0.3456198  1.7035084 
## 
## Number of Observations: 21
## Number of Groups: 3

Results

Value Score p-Value
Autocorrelation .039
Level 0.860 .000
Slope 0.335 .0273

Interpretation: Neither the change in level or slope have large values, but they are both significant.

Analysis Sentences

Null (unconditional) model

d.Null_sen <- lme(DV~1,random=~1|Case,data=data_sen,
control=list(opt="optim"),na.action="na.omit")
coefficients(d.Null_sen)
##   (Intercept)
## 1    5.317938
## 2    5.661048
## 3    4.933130
intervals(d.Null_sen)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                lower     est.    upper
## (Intercept) 4.439292 5.304038 6.168785
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                      lower      est.    upper
## sd((Intercept)) 0.07850796 0.5097337 3.309581
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.9491056 1.3140811 1.8194068
summary(d.Null_sen)
## Linear mixed-effects model fit by REML
##   Data: data_sen 
##        AIC      BIC    logLik
##   78.15763 81.14483 -36.07882
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept) Residual
## StdDev:   0.5097337 1.314081
## 
## Fixed effects:  DV ~ 1 
##                Value Std.Error DF  t-value p-value
## (Intercept) 5.304038 0.4116035 18 12.88628       0
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.0029348 -0.7101009 -0.5030493  0.5190413  1.7799149 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in level (with an autocorrelation component)

d.Level_sen <- lme(DV~1+Phase,random=~1|Case,data=data_sen,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
coefficients(d.Level_sen)
##   (Intercept)    Phase
## 1    4.403356 2.013627
## 2    4.960095 2.013627
## 3    4.114123 2.013627
intervals(d.Level_sen)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                lower     est.    upper
## (Intercept) 3.644317 4.492525 5.340732
## Phase       1.267507 2.013627 2.759747
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                     lower      est.    upper
## sd((Intercept)) 0.1039863 0.5254244 2.654877
## 
##  Correlation structure:
##          lower     est.     upper
## Phi -0.6479984 0.369898 0.9135294
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.3561243 0.7115617 1.4217510
summary(d.Level_sen)
## Linear mixed-effects model fit by REML
##   Data: data_sen 
##        AIC      BIC    logLik
##   54.38267 59.10487 -22.19134
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept)  Residual
## StdDev:   0.5254244 0.7115617
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##      Phi 
## 0.369898 
## Fixed effects:  DV ~ 1 + Phase 
##                Value Std.Error DF   t-value p-value
## (Intercept) 4.492525 0.4020290 17 11.174628       0
## Phase       2.013627 0.3536422 17  5.693965       0
##  Correlation: 
##       (Intr)
## Phase -0.389
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.58489381 -0.56685989 -0.16038408  0.05608141  1.44229062 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in slope (with an autocorrelation component)

d.Time_sen <- lme(DV~1+Time_CTR,random=~1|Case,data=data_sen,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Time_sen)
##   (Intercept)  Time_CTR
## 1    5.997233 0.4967177
## 2    6.002565 0.4967177
## 3    5.996993 0.4967177
intervals(d.Time_sen)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                 lower      est.     upper
## (Intercept) 5.1780939 5.9989302 6.8197664
## Time_CTR    0.2450553 0.4967177 0.7483802
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                        lower     est.        upper
## sd((Intercept)) 9.994779e-18 0.046682 2.180348e+14
## 
##  Correlation structure:
##         lower      est.     upper
## Phi 0.1822145 0.6708665 0.8937705
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.5594165 0.9419209 1.5859650
summary(d.Time_sen)
## Linear mixed-effects model fit by REML
##   Data: data_sen 
##        AIC      BIC    logLik
##   56.90522 61.62741 -23.45261
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept)  Residual
## StdDev:    0.046682 0.9419209
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.6708665 
## Fixed effects:  DV ~ 1 + Time_CTR 
##                Value Std.Error DF   t-value p-value
## (Intercept) 5.998930 0.3890559 17 15.419197   0e+00
## Time_CTR    0.496718 0.1192817 17  4.164239   6e-04
##  Correlation: 
##          (Intr)
## Time_CTR 0.316 
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -1.593037447 -1.058467764 -0.009692116  0.516599430  1.593252269 
## 
## Number of Observations: 21
## Number of Groups: 3

Model with random intercept and change in level/slope in Tx (with autocorrelation)

d.Model_sen <- lme(DV~1+Phase+Time_PhaseCTR,random=~1|Case,data=data_sen,
correlation=corAR1(form=~1|Case),control=list(opt="optim"),na.action="na.omit")
# Rename variables and use only complete cases
coefficients(d.Model_sen)
##   (Intercept)    Phase Time_PhaseCTR
## 1    4.238451 2.185726     0.8314312
## 2    5.000405 2.185726     0.8314312
## 3    3.855836 2.185726     0.8314312
intervals(d.Model_sen)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                  lower      est.    upper
## (Intercept)   3.561847 4.3648972 5.167947
## Phase         1.752451 2.1857262 2.619001
## Time_PhaseCTR 0.468935 0.8314312 1.193927
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Case 
##                     lower      est.    upper
## sd((Intercept)) 0.2089304 0.6094887 1.777992
## 
##  Correlation structure:
##          lower      est.     upper
## Phi -0.3663893 0.1668545 0.6175932
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.2869010 0.4267684 0.6348226
summary(d.Model_sen)
## Linear mixed-effects model fit by REML
##   Data: data_sen 
##        AIC      BIC    logLik
##   42.90278 48.24501 -15.45139
## 
## Random effects:
##  Formula: ~1 | Case
##         (Intercept)  Residual
## StdDev:   0.6094887 0.4267684
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Case 
##  Parameter estimate(s):
##       Phi 
## 0.1668545 
## Fixed effects:  DV ~ 1 + Phase + Time_PhaseCTR 
##                  Value Std.Error DF   t-value p-value
## (Intercept)   4.364897 0.3788141 16 11.522530   0e+00
## Phase         2.185726 0.2043841 16 10.694210   0e+00
## Time_PhaseCTR 0.831431 0.1709964 16  4.862273   2e-04
##  Correlation: 
##               (Intr) Phase 
## Phase         -0.237       
## Time_PhaseCTR -0.025  0.052
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -2.440579422 -0.558735282 -0.000949844  0.337804235  1.907049516 
## 
## Number of Observations: 21
## Number of Groups: 3

Results

Value Score p-Value
Autocorrelation .167
Level 2.186 < .001
Slope 0.831 < .001

Interpretation: Change in level is stronger for sentences than for digit span. The change in slope is still relatively low. Both values are significiant. Overall, the effect for change in sentences appears to be greater than for change in digit span.

Creative Commons License